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Abstract
Bose–Einstein condensation of an ideal relativistic Bose gas trapped in a
generic power-law potential is investigated. The analytical expressions for
some important parameters such as the critical temperature, ground-state
fraction and heat capacity are derived. The general criteria on the occurrence
of Bose–Einstein condensation and the discontinuity of heat capacity at the
critical temperature are obtained. The results obtained here present a unified
description for the Bose–Einstein condensation of a class of ideal Bose systems
so that many important conclusions in the literature are included in this paper.

PACS numbers: 05.30.Jp, 03.75.Hh

1. Introduction

It is commonly expected that the relativistic corrections are negligible near the critical
temperature of Bose–Einstein condensation (BEC), since the kinetic energy of a boson at
T ∼ TC is generally much smaller than its static energy, i.e., kBT � mc2, where m is the rest
mass of a boson, c is the velocity of light and kB is the Boltzmann constant. The expectation,
however, is not always true. It is found that some systems in the universe may consist of
bosons of very small rest mass. For example, the boson of a pair of neutrinos is of the rest
mass about 10−30 g [1]. For the systems of such bosons, the condition kBT � mc2 is often
not satisfied, and thus the relativistic effects may be considerable.

The properties of relativistic Bose gases have been investigated by several authors [1–7].
Early in 1965, Landsberg and Dunning-Davies studied the condensation temperature and the
anomaly of the heat capacity of an ideal relativistic Bose gas [1]. Beckmann et al extended
the work and discussed the relativistic BEC in various spatial dimensions [2, 3], particular
attentions being focused on the dependence of BEC on the dimensionality. A more complete
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treatment of BEC for the relativistic systems was given by using the techniques of quantum-
field theory at the finite temperature and density, in which the possibility of particle–antiparticle
pair production was taken into account [4–7].

Most of the previous investigations on the characteristics of relativistic Bose gases, to our
knowledge, are mainly concentrated on the systems in the absence of external potential. It
has been shown that the constrained role of the external potential may significantly change
the performance of Bose gases [8–10]. It can be said that the external potential creates
favourable conditions for controlling degenerate Bose gases and quantitatively investigating
their performance. Therefore, it is necessary to give further investigations on the properties of
relativistic Bose gases in the presence of the external potential.

In this paper, we study BEC characteristics of a relativistic Bose gas trapped in a generic
power-law potential. Some important parameters are derived analytically and the general
criteria on BEC occurrence and the discontinuity of the heat capacity at the critical temperature
are obtained. The results obtained here provide a unified description of the low-temperature
behaviours for a class of ideal Bose gases, from which many results in the literature can be
derived in particular situations.

2. Theoretical evaluation

We consider an ideal relativistic Bose gas trapped in a D-dimensional conservative field. The
single-particle Hamiltonian can be expressed as

H(p, r) =
√

p2c2 + m2c4 + U(r), (1)

where p and r are, respectively, the momentum and coordinate of a particle, U(r) is the
potential corresponding to the conservative field. It can be proved that the Hamiltonian given
above along with the momentum p constitutes a covariant vector (p, iε/c).

When the particle number in the system is large and the level spacing is much smaller than
the mean kinetic energy of particles (this condition is often satisfied [10]), the Thomas-Fermi’s
semiclassical approximation is valid. Thus, the total number of particles N and the total energy
E of the system can be expressed, respectively, as

N = N0 +
1

hD

∫
dDp dDr

exp[β(
√

p2c2 + m2c4 + U(r) − µ)] − 1
, (2)

E = N0mc2 +
1

hD

∫ √
p2c2 + m2c4 + U(r)

exp[β(
√

p2c2 + m2c4 + U(r) − µ)] − 1
dDp dDr, (3)

where β = 1/(kBT ), h is the Planck constant, and

N0 = 1

exp[β(mc2 − µ)] − 1
(4)

is the number of particles in the ground state.
We assume the external potential to be of the generic power-law form as

U(r) =
D∑

k=1

εk

∣∣∣∣ xk

Lk

∣∣∣∣
tk

, (5)

where xk is the kth component of coordinate of a particle, tk , εk and Lk are all positive
constants that mark the shape and strength of the external potential. Substituting equation (5)
into equations (2) and (3), one can get the expressions for the total number of particles and
total energy as
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N = N0 +
Ṽ

λD

(
2

πχ

)1/2 ∞∑
j=1

exp(jβµ)

jD′+η−1
KD′(j/χ), (6)

E = Nmc2 +
Ṽ kBT

λD

(
2

πχ

)1/2 ∞∑
j=1

exp(jβµ)

jD′+η
[(η − 1 − j/χ)KD′(j/χ) + (j/χ)KD′+1(j/χ)],

(7)

respectively,where D′ = (D + 1)/2, η = ∑D
k=1 1/tk , χ = kBT/(mc2), λ =

√
h2/(2πmkBT )

is the nonrelativistic thermal wavelength,

Kν(x) =
√

π

�(ν + 1/2)

(x

2

)ν
∫ ∞

0
exp(−x cosh θ) sinh2ν θ dθ (8)

is the modified Bessel function, and

Ṽ =
D∏

k=1

(2Lk)�(1/tk + 1)

(βεk)1/tk
(9)

may be referred to as the effective volume of the system [11].
When µ → mc2 and the number of particles in the ground state is still macroscopically

negligible, i.e., N0 → 0, BEC begins to occur in the system. Thus, according to equation (6),
the critical temperature TC of BEC is determined by

N = Ṽ C

λD
C

(
2

πχC

)1/2 ∞∑
j=1

exp(j/χC)

jD′+η−1
KD′(j/χC), (10)

where

λC =
√

h2/(2πmkBTC), χC = kBTC/(mc2),

and

Ṽ C =
D∏

k=1

(2Lk)�(1/tk + 1)

(βCεk)1/tk
. (11)

From equations (6) and (10), the ground-state fraction at T � TC is found to be

N0

N
= 1 −

(
T

TC

)D′+η−1
∑∞

j=1
exp(j/χ)

jD′+η−1 KD′(j/χ)∑∞
j=1

exp(j/χC)

jD′+η−1 KD′(j/χC)
. (12)

According to C = (∂E/∂T )N , one can calculate the heat capacity at the given number
of particles and external potential. When T > TC, N0 = 0, the heat capacity can be derived
from equations (6) and (7) as

CT >TC =
(

∂E

∂T

)
N

=
(

∂E

∂T

)
N,µ

+

(
∂E

∂µ

)
N,T

(
∂µ

∂T

)
N

= NkB




∑∞
j=1

exp(jβµ)

jD′+η

[
[η(η − 1) − 2(η − 1)j/χ + j 2/χ2]KD′(j/χ) + (j/χ)

· (2η − 3 − 2j/χ)KD′+1(j/χ) + (j 2/χ2)KD′+2(j/χ)

]
∑∞

j=1
exp(jβµ)

jD′+η−1 KD′(j/χ)

−
{∑∞

j=1
exp(jβµ)

jD′+η−1 [(η − 1 − j/χ)KD′(j/χ) + (j/χ)KD′+1(j/χ)]
}2

∑∞
j=1

exp(jβµ)

jD′+η−1 KD′(j/χ)
∑∞

j=1
exp(jβµ)

jD′+η−2 KD′(j/χ)




, (13)
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where the property of the modified Bessel function

x
dKν(x)

dx
= νKν(x) − xKν+1(x) (14)

is employed. When T � TC, µ = mc2 and the heat capacity is found from equations (7) and
(10) to be

CT �TC =
(

∂E

∂T

)
N

= NkB

(
T

TC

)D′+η−1

×
∑∞

j=1
exp(j/χ)

jD′+η

[
[η(η − 1) − 2(η − 1)j/χ + j 2/χ2]KD′(j/χ) + (j/χ)

· (2η − 3 − 2j/χ)KD′+1(j/χ) + (j 2/χ2)KD′+2(j/χ)

]
∑∞

j=1
exp(j/χC)

jD′+η−1 KD′(j/χC)
. (15)

By using equations (13) and (15), the jump of the heat capacity between T → T −
C and T → T +

C
is obtained as

�C ≡ CT =T −
C

− CT =T +
C

= NkB

{∑∞
j=1

exp(j/χC)

jD′+η−1 [(η − 1 − j/χC)KD′(j/χC) + (j/χC)KD′+1(j/χC)]
}2

∑∞
j=1

exp(j/χC)

jD′+η−1 KD′(j/χC)
∑∞

j=1
exp(j/χC)

jD′+η−2 KD′(j/χC)
. (16)

3. Discussion

(1) Using equation (10), one can obtain one important condition that determines whether or
not the trapped relativistic Bose system can condense at a nonzero temperature. For the system
of massive particles, i.e., the parameter χC = kBTC/(mc2) is finite, we have j/χC � 1 for
j greater than certain large value jm. Thus, by using the expansion of the modified Bessel
function for a large argument, i.e.,

Kν(x) =
√

π

2x
exp(−x)

(
1 +

4ν − 1

8x
+

16ν4 − 40ν2 + 9

128x2
+ · · ·

)
, (17)

equation (10) can be expressed as

N = Ṽ C

λD
C

(
2

πχC

)1/2 jm−1∑
j=1

exp(j/χC)

jD′+η−1
KD′(j/χC)

+
Ṽ C

λD
C

∞∑
j=jm

1

jD′+η−1/2

[
1 +

4D′ − 1

8

(
χC

j

)
+

16D′4 − 40D′2 + 9

128

(
χC

j

)2

+ · · ·
]
. (18)

When D′ + η − 1/2 > 1, the sum
∑∞

j=jm
in equation (18) is convergent, which implies that

BEC can occur in the system. Considering D′ = (D + 1)/2 and η = ∑D
k=1 1/tk , we get a

general condition for the BEC occurrence of a Bose gas with massive particles:
D∑

k=1

1

tk
+

D

2
> 1. (19)

It is interesting to note that this condition is the same as that of a nonrelativistic trapped Bose
gas [12].

For the system of massless particles, i.e., χC = kBTC/(mc2) → ∞, using the
approximation exp(j/χC) ≈ 1 and

Kν(x)
x→0−→ �(ν)

2

(
2

x

)ν

, (20)
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one can get from equation (10) that

N = Ṽ C

λ̃D
C

ζ(η + D), (21)

where

λ̃C = hc

2kBTC

[
1

π(D−1)/2�(D/2 + 1/2)

]1/D

(22)

is the ultrarelativistic thermal wavelength at T = TC [11], ζ(ν) = ∑∞
j=1 1/jν is the Riemann

Zeta function. Since the Riemann Zeta function ζ(ν) is convergent only when ν > 1, the
condition for BEC occurrence of a massless Bose gas is found from equation (21) to be

D∑
k=1

1

tk
+ D > 1. (23)

It should be noted that equation (23) is valid only for a massless Bose gas with a conserved
number of particles. For a phonon gas, because the number of phonons is not conserved, BEC
does not take place.

Equations (19) and (23) indicate that the criteria for BEC occurrence relate not only to
the dimensionality of space and characteristics of particles but also to the shape of the external
potential. For example, in the case of tk → ∞, the external potential becomes

U(r) =
{

0 |xk| � Lk

∞ |xk| > Lk,
(24)

which corresponds to a D-dimensional box, and the criteria for the BEC occurrence are D > 2
and D > 1 for the systems of massive particles and massless particles, respectively. The
results are just the same as those given in [2, 3]. In another case of tk = 2, the external
potential becomes a D-dimensional ‘harmonic potential’ and the criteria for BEC occurrence
are D > 1 and D > 2/3 for the systems of massive and massless particles, respectively.

(2) Using equation (16) and the similar method mentioned above, we can obtain the
general condition for the discontinuity of heat capacity at the critical temperature. For the
system of massive particles, it is found that if

D∑
k=1

1

tk
+

D

2
> 2, (25)

there is a jump of the heat capacity at the critical temperature. Otherwise, there exists no
jump. For the system of massless particles, however, the condition that the heat capacity is
discontinuous at the critical temperature is found to be

D∑
k=1

1

tk
+ D > 2. (26)

(3) It is seen from equation (10) that the critical temperature is dependent on the number
of particles, the external potential and the rest mass of a particle. Let us introduce a parameter
related to these quantities:

χC0 ≡ kBTC0

mc2
= 1

mc2

[
NhD

ζ(η + D/2)(2πm)D/2

D∏
i=1

ε
1/tk
k

(2Lk)�(1/tk + 1)

]1/(η+D/2)

, (27)
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Figure 1. The scaled critical temperature χC = kBTC/(mc2) as a function of the parameter χC0.
The solid lines with symbols represent the results of the relativistic Bose gas for different η. The
dashed line represents the result of the nonrelativistic approximation.

where TC0 is the critical temperature under the nonrelativistic limit [12]. By using
equation (27), equation (10) can be expressed as

χ
η+D/2
C0 =

(
2

π

)1/2
χ

η+D/2−1/2
C

ζ(η + D/2)

∞∑
j=1

exp(j/χC)

jD′+η−1
KD′(j/χC). (28)

Figure 1 shows the scaled critical temperature χC = kBTC/(mc2) as a function of the parameter
χC0 in the cases of D = 3 and different parameters η. The results are compared with the
predictions based on the nonrelativistic approximation. It is shown that the relativistic effect
results in the lowering of the critical temperature. For the system composed of particles of very
small rest mass, which, according to equation (27), implies that the parameter χC0 is large, the
correction of the critical temperature due to the relativistic effect may be considerable.

(4) Using equations (6), (13) and (15), one can expound the dependence of the heat
capacity on the temperature. Figure 2 shows the curves of the reduced heat capacity C/(NkB)

varying with the scaled temperature T/TC, where (a) and (b) correspond to the cases of D = 3,
η = 0 and D = 3, η = 3/2, respectively. It is found that the relativistic effect decreases
the value of the heat capacity below a certain temperature but results in the increase in the
heat capacity above this temperature (see the insets). The heat capacity is continuous in the
case of η = 0 (figure 2(a)) but exists a gap at the critical temperature in the case of η = 3/2
(figure 2(b)). It can also be seen from figure 2(b) that the relativistic effect enlarges the gap of
the heat capacity at the critical temperature.

(5) In the case of the nonrelativistic limit, i.e., χ = kBT/(mc2) � 1 and χC =
kBTC/(mc2) � 1, by using the approximation for the modified Bessel function:

Kν(x)
x�1−→

√
π

2x
exp(−x). (29)

Equations (10), (12), (13), (15) and (16) are, respectively, reduced to

TC = 1

kB

[
NhD

ζ(η + D/2)(2πm)D/2

D∏
i=1

ε
1/tk
k

(2Lk)�(1/tk + 1)

]1/(η+D/2)

, (30)
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Figure 2. The heat capacity C/(NkB) as a function of the scaled temperature T/TC for the
different values of χC0. The solid line and dashed lines represent the results of the relativistic Bose
gas with χC0 = 1.0 and 0.2, respectively. The dot line represents the result of the nonrelativistic
approximation.

N0

N
= 1 −

(
T

TC

)η+D/2

, (31)

CT >TC = NkB

{
(η + D/2)(η + D/2 + 1)

gη+D/2+1(z)

gη+D/2(z)
− (η + D/2)2 gη+D/2(z)

gη+D/2−1(z)

}
, (32)

CT �TC = NkB(η + D/2)(η + D/2 + 1)

(
T

TC

)η+D/2
ζ(η + D/2 + 1)

ζ(η + D/2)
, (33)

�C = NkB(η + D/2)2 ζ(η + D/2)

ζ(η + D/2 − 1/2)
, (34)

where gν(x) = ∑∞
j=1 xj/jν is the expansion of the Bose integral and z ≡ exp[β(µ − mc2)],

which, according to equations (6) and (29), is determined by

N = Ṽ

λD
gη+D/2(z) (T > TC). (35)
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Equations (30)–(34) give, respectively, the expressions for the critical temperature, ground-
state fraction, heat capacity at T > TC and T � TC, and gap of the heat capacity at T = TC

for a nonrelativistic ideal Bose gas trapped in a power-law potential. They are just the same
as those obtained in [12] as long as s = 2 and a = 1/(2m) in [12] are set. If it is further
assumed that tk → ∞, i.e., η = 0, and D = 3, the properties of a nonrelativistic ideal
Bose gas confined in a three-dimensional box, which have been discussed in many textbooks
[15, 16], can be directly derived from the above results.

On the other hand, in the ultrarelativistic limit, i.e., χ = kBT/(mc2) → ∞ and
χC = kBTC/(mc2) → ∞, by using equation (20) and the approximations exp(j/χ) ≈ 1
and exp(j/χC) ≈ 1, the critical temperature, ground-state fraction, heat capacity at T > TC

and T � TC, and gap of the heat capacity at T = TC are found from equations (10), (12), (13),
(15) and (16) to be

TC = 1

kB

[
N(hc)D

2Dπ(D−1)/2�(D/2 + 1/2)ζ(η + D)

D∏
k=1

ε
1/tk
k

(2Lk)�(1/tk + 1)

]1/(η+D)

, (36)

N0

N
= 1 −

(
T

TC

)η+D

, (37)

CT >TC = NkB

{
(η + D)(η + D + 1)

gη+D+1(z)

gη+D(z)
− (η + D)2 gη+D(z)

gη+D−1(z)

}
, (38)

CT �TC = NkB(η + D)(η + D + 1)

(
T

TC

)η+D
ζ(η + D + 1)

ζ(η + D)
, (39)

�C = NkB(η + D)2 ζ(η + D)

ζ(η + D − 1)
, (40)

respectively, where z ≡ exp[β(µ − mc2)] is determined by

N = Ṽ

λ̃D
gη+D(z) (T > TC), (41)

and

λ̃ = hc

2kBT

[
1

π(D−1)/2�(D/2 + 1/2)

]1/D

(42)

is the ultrarelativistic thermal wavelength at temperature T [11]. Equations (36)–(40) are just
the same as those obtained in [12] as long as s = 1 and a = c in [12] are set. If tk → ∞ and
D = 3 are further set, the properties of an ultrarelativistic Bose gas in a three-dimensional box
can be obtained.

(6) Because of the general form of the external potential adopted, the expressions derived
above are valid for a variety of Bose gases trapped in different external potentials corresponding
to the different parameters tk , εk and Lk .

If tk → ∞ is set, the expressions given above can be used to explore the BEC
characteristics of a relativistic Bose gas confined in a D-dimensional box. For example,
according to equations (10) and (11), the critical temperature is now determined by

N = V

λD
C

(
2

πχC

)1/2 ∞∑
j=1

exp(j/χC)

jD′−1
KD′(j/χC), (43)

where V = ∏D
k=1 (2Lk) is the D-dimensional volume of the box. Equation (43) is just the

same as the results given in [2, 3] as long as λC =
√

h2/(2πmkBTC) and χC = kBTC/(mc2)
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is substituted into it and the system of units such that c = 1, kB = 1 and h̄ = h/(2π) = 1 is
employed. In the particular case of D = 3, equation (43) is simplified as

N = V

λ3
C

(
2

πχC

)1/2 ∞∑
j=1

exp(j/χC)

j
K2(j/χC). (44)

It is found that equation (44) is the same as the result obtained in [1] if the necessary
mathematical transformation is done.

If tk = 2 and εk

/
L

tk
k = γk/2 (γk is a positive constant) are chosen, the above expressions

will give the properties of a Bose gas trapped in a D-dimensional ‘harmonic potential’, which
have been widely investigated under the nonrelativistic limit [13, 14]. For example, it is found
from equations (10) and (11) that, in the case of ‘harmonic trap’, the critical temperature is
determined by

N =
(

kBTC

h̄�

)D (
2

πχC

)1/2 ∞∑
j=1

exp(j/χC)

jD′+1/2
KD′(j/χC), (45)

where � ≡ [∏D
k=1 γ

1/2
k

]1/D/
m1/2. In the case of nonrelativistic limit, equation (45) is reduced

to

TC = h̄�

kB

[
N

ζ(D)

]1/D

, (46)

which is the familiar expression for the critical temperature of a nonrelativistic ideal Bose gas
trapped in a harmonic potential [13].

4. Conclusions

In summary, we have studied the Bose–Einstein condensation of a relativistic Bose gas trapped
in a D-dimensional generic power-law potential. Some important parameters are derived and
the general criteria on BEC occurrence and the discontinuity of the heat capacity at the critical
temperature are given. It is shown that the criteria on the BEC occurrence and the discontinuity
of the heat capacity at the critical temperature are different for the systems with massive and
massless particles. The relativistic effect lowers the critical temperature of BEC but enlarges
the gap of the heat capacity at the critical temperature.

Although one relativistic Bose system trapped in an external potential is studied only, the
results derived in the present paper can be used to explore the BEC properties of a variety
of Bose systems in a unified way. Therefore, the results obtained here are more general and
useful.

It should be noted here that the present paper mainly concentrates on discussing the
corrections to the BEC properties resulted from the relativistic effect and does not consider
the possibility of the particle–antiparticle pair production. It is shown that taking the pair
production into account will lead to several novel characteristics about a relativistic Bose
system. This will be discussed in the proceeding work.
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